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MATRIX SHEAR LAG ANALYSIS UTTILIZING A HIGH-SPEED
DIGITAL COMPUTER
by

William K. Reys
INTRODUCTION

Soon after the introduction of the semi-monocoque type of construc-
tion in aircraft, some of the problems encountered in analytically de-
termining the stress distribution in the stiressed-skin structure re-
ceived considerable attention. Accounting for the shear deformations of
the skin in determining the’distribution of load between the stiffeners
and the skin was one of the most difficult problems to solve satisfac-
torily. This problem of accounting for shear deformations in determin-
ing the sitress distribution became known as the shear lag}problem in
the United States and the stress-diffusion problem in GreatABritain.

During the late 1930's and early 1940's a number of investigators
published fairly rigorous mathematical analyses of the shear lag prob-
lem. These mathematical treatments were of limited usefulness for
various reasons. In some of these.ahalyses, in order to obtain a solu-
tion, an idealized structure or mathematical model was used that did
not adequately represent an actual structure. In other analyses, assump-
ﬁion; of infinite length, unusual area variations or a limited number
of stiffeners resulted in solutions that were difficult, if not impossi-
ble, to apply to a practical structure. The most satisfactory analyses,

from the standpoint of adequate representation of the structure, were
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impractical to use for design purposes due to the 1argé amount of com-
putational effort required.

In 1948, Paul Kuhn of the National Advisory Committee for Aero-
nautics published a simplified analysis based upon the concept of a
substitute single stringer that made possible the analysis of multi-
stringer panels with a minimum of computational effort. Since 1948, the
simplified analysis proposed by Kuhn has been widely accepted and used
throughout the aircraft industry. However, since the Kuhn analysis re-
quires the use of empirical relations that were obtained from a very
limited experimental program, some questions have arisen concerning the
use of the Kuhn analysis for certain types of structures.

By using high-speed digital computers, it is now possible to per-
form detailed structural analyses that were formerly impractical due
to the large computational effort required. In general, in order to
utilize a digital computer for this purpose, it is necessary to use ma-
trix methods adapted to the specific structure.

In this report, a brief discussion of some of the early efforts to
solve the shear lag problem is presented. After discussing some of the
early work, an analysis of the shear lag problem based upon the Maxwell-
Mohr Method is presented. Using matrix methods, this Maxwell-Mohr analy-
sis 1s adapted for solution by a high-speed digital computer. In one of
the appendices, two numerical examples are presented in which the Maxwell-
Mohr analysis is applied to the thrust structure of the C-5 launch vehicle.

Recommendations for further study and investigation of the shear lag prob-

lem are given.




REVIEN OF PREVIOUS WORK

A survey of the readily available literature was conducted as a
means of becoming familiar with the work of other investigators who
have studied the shear lag problem. The results of this survey are
presented as references 1 through 54. Although this list of refer-
ences is not a complete list of all published articles relating to
shear lag, it is believed to include the major contributions that have
been published in the English language.

One of the first, if not the first, published discussions of the
shear lag problem was presented in Great Britain by Winny in refer-
ence 5. Winny considered the distribution of the normal stress in
the unstiffened skin of a wing between two spars subjected to a
known spanwise bending moment distribution. Winny obtained a Four-
ier series solution for the differential equations of equilibrium.

In Great Britain, the work of Winny was followed by that of Argyris

in references 3 through 6, Cox in references 11 through 13, Duncan

in reference 16, Fine in references 19 and 20, Goodey in reference

22, Smith in reference 50 and Williams in references 52 and 53. Three
of the most comprehensive discussions are those of Argyris in refer-
ence 57, Cox in reference 13 and Goodey in reference 22.

In Germany, Ebner considered the shear lag problem at about the
same time as early investigators in Great Britain and the United States.
Two of Ebner's papers were translated and are available as references
17 and 18.

In the United Stafes, some of the first published solutions of

the shear lag problem were those of Kuhn in references 29 through 32,



Lovett in reference 39, Reissner in reference L3 and Sibert in refer-
ence 9. Kuhn followed his early work with a number of other publi-
cations and in reference 36 presented one of the most comprehensive dis-
cussions of shear lag effects that is currently available. Other impor-
tant contributions are those of Borsari in reference 8, Chiarito in refer-
ences 9 and 10, Duberg in reference 15, Hildebrand in references 2l and
25, Hoff in references 26 and 27, Kempner in reference 28, Levy in refer-
ence 37, Reissner in references 45 and 46 and White in reference 51.
Unfortunately, the large majority of the solutions presented in the
references cited above are not directly applicable to a multi-stiffened
structure with tapered flanges such as the thrust structure of the C-5
launch vehicle. A number of investigators have obtained exact solutions
for a panel consisting of only one stiffener plus a flange to which the
load is applied. When the same type of analysis is applied to a panel con-
taining more than one stiffener, the labor involved in performing the anal-
ysis and obtaining a solution increases very rapidly. Furthermore, the ex-
pressions obtained for the stress distributions become considerably more
complex and awkward to use. To illustrate the rapid increase in complex-
ity with the number of stiffeners, an exact analysis of a panel consisting
of two stiffeners in addition to the flange is presented in Appendix A.
This analysis is the same as that presented by Kuhn in reference 36 for
a single stiffener. Note that this analysis may also be applied to a
stiffened cylinder if the proper areas are used in computing the shear lag

parameters.

The one analysis that is ralatively simple to apply to a multi-string-




er stiffened panel is the analysis of Kuhn based upon the concept of
a substitute single stringer as presented in references 35 and 36.
Since the application of the substitute single stringer analysis re-
quires the use of empirical relations that were determined from the
results of a limited experimental program, further study of this
method is desirable.

In addition to the analytical and experimental studies mention-
ed above, the electrical analogy solutions presented by Newton in
reference L1 and Ross in reference L7 are of particular interest.
These electrical analogies make it practical to apply some of the
more rigorous analytical solutions to a practical structure.

A brief survey of the literature relating to the application
of matrix methods in structural analysis was also conducted. The
results of this literature search are presented as references 55

through 98.



MATRIX ANALYSIS OF STIFFENED PANEL

A shear lag analysis based upon the application of the Maxwell-Mohr
Method appears to offer a number of advantages over some of the other
analyses. Since an analysis based upon the Maxwell-Mohr Method is readi-
ly adapted to matrix notation, solutions may be obtained utilizing a digi-
tal computer. Therefore, after a computer program has been written for
the analysis, it should be possible to obtain future solutions with a min-
imum expenditure of time and effort. This procedure would make possible
the consideration of a number of alternate designs for the purpose of ob-
taining a minimum weight design. Wehle and Lansing in reference 98 and
Bruhn in reference 61 have shown how this type of analysis may be applied
to a variety of structures.

The application of the Maxwell-Mohr Method requires that the actual
structure be replaced by an idealized structure composed of simple struct-
ural elements. For a multi-stringer stiffened panel, there are at least
two immediately apparent choices for the idealized structure. In one case,
the idealized structure may be visualized as being composed of sheet ele-
ments that transmit only shearing forces plus stiffeners that transmit
only normal forces. The area of each stiffener in this idealized structure
may be taken as the actual stiffener area plus the area of an equivalent
width of sheet that acts with the stiffener in resisting the normal forces.
An idealized sfructure of this type is used in the numerical example of
Method I presented in Appendix E. An alternate choice for the idealized
structure may be méde by distributing the stiffener areas over the sheet to

produce an equivalent unstiffened panel. Since there are no stiffeners in




-3

this ldealized structure, the equivalent sheet material must resist both
shearing and normal forces. A numerical example using this type of
structure is presented as Method II in Appendix E. The notation em-
ployed throughout Appendix E is the same as that used by Bruhn in ref-
erence 61.

In adapting the Maxwell-Mohr Method for solution by matrix alge-
bra, it is necessary to have analytical expressions for the flexibil-
ity coefficients. These flexibility coefficients are denoted by the
symbol ajj and correspond to the displacement at the point i due to
a unit change in force at the point j. Wehle and Lansing in refer-
ence 98 have obtained analytical expressions for the flexibility co-
efficients of a variety of structural elements. These expressions
for the flexibility coefficients are also given by Bruhn in reference
61.

In reference 98, Wehle and Lansing present the flexibility co-
efficients for a bar with a tapering area subjected to a uniformly
varying axial force. These flexibility coefficients are expressed
in terms of parameters that are functions of the taper ratio. How-
ever, Wehle and Lansing do not give the analytical expressions for
these parameters although they do represent them in graphical form.

In order to utilize a computer to generate the elements in a matrix

of flexibility coefficients, it is necessary to have functional ex-
pressions for these parameters instead of graphical representations.
Therefore, analytical expressions for the flexibility coefficients of
a tapered bar are derived in Appendices B and C. In Appendix B, a

bar having a linearly tapering area is considered. In Appendix C.



a bar having linearly varing dimensions is considered.

The equivalent sheet analysis presented as Method II in Appendix E
requires the use of flexibility coefficients for a panel subjected to a
uniformly varying shear flow. Since this type of loading was not con-
sidered in any of the references consulted, expressions for the flexi-
bility coefficients of a panel subjected to a uniformly varying shear
flow are derived in Appendix D.

In the analyses presented as Methods I and II in Appendix E, the sheet
material was assumed to be capable of transmitting the loads without buck-
ling. It may be possible to use the analysis of Method I in the presence
of buckling by an appropriate reduction in the width of sheet assumed
to act with each stiffener in resisting compressive forces. However, this
would introduce additional uncertanties. The analysis presented as Method
IT in Appendix E would be difficult to apply in the presence of buckling.

The analysis presented as Method II in Appendix E has the advantage
of providing a more detailed stress distribution immediately adjacent to
the flange or post where the stress gradient is largest. Both analyses

have the disadvantage of requiring the inversion of high-order matrices.




CONCLUDING REMARKS

The results obtained in the numerical examples of Appendix E
illustrate the use of the Maxwell-Mohr Method in performing a shear
lag analysis of a complex structure. These results also demonstrate
the need of a high-speed digital computer to fully utilize the analy-
tical procedures presently available. However, these results do not
represent the ultimate solution to the shear lag problem. Further
study of the application of the Maxwell-Mohr Method is necessary in
which different choices of the idealized structure are made. The
application of this method to a panel containing cut-outs or discon-
tinuities should be investigated. Furthermore, some of the rigorous
analyses such as those employing stress functions should be investi-
gated to determine the feasibility of adapting other analyses to
digital computer solutions.

The available published literature contains very little useful
experimental data. Additional experimental data are required to
compare the stress distributions obtained analytically with actual
stress distributions.

The possibility of utilizing one of the available solutions in a
minimum-weight analysis should be investigated. However, this study
should probably be delayed until an adequate experimental program has
determined the most satisfactory analytical solution.

A number of tyese areas requiring further study will be investi-

gated in the performance of contract NAS8-5168.
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APPENDIX A

STRESS DISTRIBUTION FOR UNSYMMETRICAL LOADING

For the cylinder shown in figure Al or the flat panel shown in

figure A2, expressions may be derived for the normal stresses in the

flanges and stiffeners and the shearing stresses in webs assuming an

infinite transverse stiffness

These are the type of expressions re-

ferred to by Kuhn on page 123 of reference 36.
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In both figures the load D is applied to flange 1 and the web thick-

ness is t.
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From the free-body diagrams of figure A3, the following equations of

equilibrium are obtained:

doF
1_ 2t
= - AF T (Eq.A1)
do.
L. _ L
=L (t, + ) (Eq.A2)
do
F
2 _ 2t ,
where, op is the normal stress in flange 1
' 1
Op is the normal stress in flange 2
2

T is the shearing stress in the web between flange 1 and the
stiffener (AL)

T, is the shearing stress in the web between flange 2 and the
stiffener (AL).

The relationships between the shearing stresses, T and T and the

normal stresses, oFl, on and ap, are
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dt

1l _ G
_d.')—( = ﬁ (OFl - OL) (EQ.ALL)
dt G

Differentiating equations AL and A5 with respect to x and substituting

equations Al, A2 and A3 in the result yields

dgr T T, + 71
et [T, (Eq.46)
dx2 Eb AF AL
and
) g [T Tt
5 = -— A—- + _A_— (Eq.A?)
dx Eb F L ,
Defining Ap = Ap + AL’ equations A6 and A7 become
2
d=
_% - Gt i Kl_ T, (Eq.A8)
dx Eb FAL
2
d™= A
— - = (A_l' TR (Bq-A9)
dx Eb \ FAL
Shear lag parameters Kl and K2 are defined as
Gt AT ’ Gt 1 1 )
K = — ————— = — —t — (Eq.lo
1 \/ Eb AFAL Eb AF AL
Gt 1
K=/ (K') (Eq.11)
L
Equations A8 and A9 may now be written as
2
d™
1 2 2 -
- Kl 7 -K 7, =0 (Eq.12)
be
d2T2 5 5
—;;E - K2 Ty T Kl T, = 0 (Eq.13)
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Solving equation Al2 for T, and substituting in equation Al3

2
N 2
d'= dz
1 2 1
- 2K + (K)4 - Kh) T, =0 (Eq.A1L)
de 1 gl 1 720

Equation AlL has a solution of the form

T, = C1 exp m x + 02 exp m X + C3 exp mx + Ch exp mhx* (Eq.A15)

where Cl’ 02, 03, and Ch are constants to be determined from the bound-

ary conditions and m, My, Mo, and mh are the roots of the equation

3

i 2.2 L
m - 2K1m + K& - K2 = Q.

The roots are

2 2
- + = +
m1,2 - Kl * K2 K

= - K =t
3,0 K - K K,
Substituting these roots, equation Al5 becomes

T, = 0, exp K3x + C, exp (—K3x) + 03 exp Khx + Ch exp (—Khx)

(Eq.A16)
Substituting equation A16 into equation A12 and solving for Ty
T, = Cl exp K3x - C, exp (—K3X) - C3 exp Kux + Ch exp (—Khx)
(Eq.A17)
The boundary conditions are:

(1) At x=0, 7, =0

1
(2) At x = 0, T, =0
P
(3)Atx=1L, 0, =-—ando =0
F,oEg L
(L) At x = 1, OFz =0 and o =0

Applying the boundary conditions to equations Al6 and Al7 yields, after

simplification,

2 . u
-The notation exp u denotes e .
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1 1
= (exp K.L - exp K.x) + =

_pot | 5 ’ .

o' -
L EbAgA K3 exp K3L + Kh exp (-KuL)

exp (—KhL) - exp (-Kux)

(Eq.A29)

Equations A22 and A23 for the shearing stresses combined with equations
A27, A28, and A29 for the normal stresses completely describe the stress
distribution in the cylinder of figure Al or the flat panel of figure

A2,




APPENDIX B
FLEXIBILITY COEFFICIENTS FOR A BAR WITH A LINEARLY TAPERING AREA
SUBJECTED TO A UNIFORMLY VARYING AXIAIL FORCE

In order to fully utilize computer capabilities to generate the
elements in a matrix of flexibility coefficients, it is necessary to
obtain algebraic expressions for the flexibility coefficients. Wehle
and Lansing in reference 98 have developed expressions for the flexi-
bility coefficients of members subjected to various loadings. How-'
ever, they do not give algebraic expressions for the flexibility
coefficients of a bar with a linearly tapered area subjected to a
uniformly varying axial force. In this appendix, the necessary alge-
braic expressions are derived. The notation employed is the same as
that used by Bruhn and Schmitt in reference 61.

Consider the bar shown in figure Bl in which the area varies

linearly from Aj to Aj.
V7771141474447 44471/74790 497427777 14779/ P NI AP

Figure Bl

The area Ax at a distance x from the area Aj; may be expressed as

17

Ax = A5 + f (A5-Ai). (Eq.B1)
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If the shear flow in the web attached to the bar is assumed con-

stant, the force in the bar, Ao at station x may be expressed as

X
o =9 *§ (qj - q;)- (Eq.B2)
The strain energy i{l the bar is given by
1 o |
U = -ZE n dx. (EQ-B3)
L X
and the flexibility coefficients are given by
ij i aqiaqj
2
_ 3T
ag; = 2 > (Eqs.Bl)
9
33 2
94
qJ

Substituting the expressions for q and given by equations B2 and B3

into equations Bl, the equations for the flexibility coefficients be-

come L L T
2
a - a - L] xdx 1 X dx
ij ji EL A A‘x EL2 Ax
L L 0 v 5
1 tdx 2\ xdx 1 x dx
%i T E j;A‘ L g A -2 \& ¢ (Eqs.B5)
X X EL X
o \_2 o] (o]
. oL \xfax
33 gl Al
(o]
-t

A,
Denoting the area ratio -A—l— by ¢, equations B5 become, after integration
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aij = aji = grp bu
aji = '3ALE' $ii }(Eqs.Bé)
i
.. = L ¢..
a
JJ 3AiE Jd ]
where,
ﬂ
.= be c+l c
it moe |T e
d)ii = (:'1'-30)3 C2—)_2LC+3 + 1Inc - f(Eqs_B7)
-c
2
¢.. = 3¢ 3cc-lie+l c2ln ¢
JJ (1_0)3 2

In Table Bl, values of the parameters ®ij, ¢jj and ¢ij are tabu-
lated for 0.0l increments of c¢ from C.10 to 0.90. In figure B2, the

¢ parameters are plotted versus the area ratio c.



Table Bl

Flexibility Coefficient Parameters for a Linearly Tapering Area

1
011 ®JJ ¢ij l c dii i ¢JJ
i
0.05 ! 0.2790 | 0.0719 | 0O.1221 0.51 | 0.8231 : 0.5889 | 0.690L
0.10 | 0.4105 | 0.1391 | 0.2179 0.52 | 0.828L . 0.598L4 | o.
0. 0.4312 | 0.1521 | 0.2351 0.53 | 0.8335 | 0.6078 | O.
0. 0.4506 | 0.16L49 | 0.2518 0.54 | 0.8386 i 0.6171 | O.
0. 0.L4689 | 0.1776 | 0.2681 0.55 | 0.8435 : 0.626L | O.
0.1 | 0.4862 | 0.1901 | 0.2839 0.56 | 0.8483 i 0.6356 | O.
0.15 | 0.5026 | 0.2026 | 0.2992 0.57 | 0.8529 i 0.6LL48 | O.
0. 0.5181 | 0.2149 | 0.31hk2 0.58 | 0.8579 ! 0.6540 | O.
0. 0.5329 | 0.2271 | 0.3288 0.59 | 0.8626 ! 0.6631 | O.
0. 0.5471 | 0.2391 | 0.3431 0.60 | 0.8670 | 0.6721 | O.
0. 0.5606 | 0.2511 | 0.3570 0.61 | 0.8714 | 0.6811 { O.
0.20 ! 0.5736 | 0.2629 | 0.3706 0.62 | 0.8758 { 0.6900 | O.
0.21 | 0.5860 | 0.2747 | 0.3839 0.63 | 0.8800 | 0.6989 | O.
0.22 | 0.5979 | 0.2863 | 0.3969 I 0.6l | 0.88L2 | 0.7078 { O.
0.23 1 0.6094 | 0.2979 | 0.L097 : 0.65 | 0.8884 | 0.7166 | O.
0.2 | 0.6205 | 0.3093 | 0.4222 i 0.66 | 0.8924 ¢ 0.7253 | O.
0. © 0.6312 | 0.3207 | 0.L3Lh | 0.67 | 0.896L | 0.7340 | O.
I 0.26 : 0.6415 | 0.3320 | 0.LL6L 0.68 | 0.9002 | 0.7426 | O.
i 0.27 , 0.6515 | 0.3431 | 0.4582 0.69 | 0.9037 | 0.7511 | O.
0.28 : 0.6611 | 0.35L2 | 0.4698 0.70 | 0.9068 | 0.7593 | O.
0. i 0.6705 | 0.3652 | 0.L4811 0.71 | 0.9118 { 0.7685 | O.
0. i 0.6795 | 0.3762 | 0.4923 0.72 | 0.9155 | 0.7770 | O.
' 0.31 1 0.6883 | 0.3870 | 0.5033 0.73 | 0.9191 | 0.785L4 | O.
| 0.32 1 0.6968 | 0.3978 | 0.51L0 0.7L | 0.9227 | 0.7939 | O.
i 0.33 | 0.7051 | 0.L4O8L | 0.5246 0.75 | 0.9262 | 0.8022 | O.
0.3h | 0.7132 | 0.4190 | 0.5351 0.76 | 0.9297 { 0.8106 | O.
0. . 0.7210 | 0.L296 | 0.5453 0.77 | 0.9331 } 0.8189 ; O.
0. 0.7286 | 0.L4400 | 0.555L 0.78 | 0.9365 { 0.8272 | 0.
0. 0.7360 | 0.L50L | 0.5653 0.79 | 0.9398 ! 0.8354 | O.
0. 0.7432 | 0.L4607 | 0.5752 0.80 | 0.9431 j 0.8L436 | O.
0. 0.7503 | 0.4710 | 0.5848 0.81 | 0.9463 | 0.8517 | O.
0. l 0.7572 | 0.4811 | 0.5943 0.82 | 0.949L | 0.8598 | O.
0. 0.7639 | 0.4913 | 0.6036 0.83 | 0.9524 i 0.8677 | O.
0. 0.7704 | 0.5013 | 0.6128 0.8L4 | 0.9555 | 0.8753 { O.
0. 0.7768 | 0.5113 | 0.6219 0.85 | 0.9586 | 0.883L | O.
0. 0.7831 | 0.5212 | 0.6309 0.86 | 0.9616 | 0.8915 | O.
0. 0.7892 | 0.5311 | 0.6398 0.87 | 0.9646 | 0.8996 | 0.9314
0. 0.7951 | 0.5408 | 0.6L485 0.88 | 0.9676 | 0.9077 | 0.9370
0. 0.8010 | 0.5506 | 0.6571 0.89 | 0.9705 | 0.9156 | 0.9L2S
0. 0.8067 | 0.5603 | 0.6656 0.90 | 0.973L | 0.9234} 0.9480
0. 0.8123 | 0.5699 | 0.6740 0.95 | 0.9872 | 0.9619 | 0.9750
0. 0.8178 | 0.5794 | 0.6822 1.00 { 1.0000 | 1.0000 | 1.0000




Flexibility Coefficient Parameters for A Linearly Tapering Area
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APPENDIX C
FLEXIBILITY COEFFICIENTS FOR A BAR WITH LINEARLY VARYING DIMENSIONS
SUBJECTED TO A UNIFORMLY VARYING AXTAL FORCE

In this appendix, algebraic expressions are derived for the flexibili-
ty coefficients for a bar in which the typical cross-sectional dimension,
such as the diameter of a round rod or width of a square bar, varies linear-
1y over the length of the bar. The bar shown in figure C1 is assumed to
be subjected to a constant shear flow so that the axial force in the bar
varies uniformly throughout the length. As in Appendix B, the notation

employed is the same as that used by Bruhn and Schmitt in reference 61.

LLLLLLLLL LS L L LS L L

A;\
% | %

Figure C1

The equations for the normal force in the bar at any station and for
the total strain energy stored in the bar are given in Appendix B by egqua-
tions B2 and B3. If bi is the value of the typical dimension at x = O and
bj the balue at x = L, the value by at station x is given by

bx =bj + = (bj-bi) (Eq.C1)

The expressions for the fiexibility coefficients in terms of the area will
be the same as those given in Appendix B by equations B5. The integration

is performed noting that the area may be expressed as




where K depends upon the cross-sectional shape.

- kb2 = 2
Ax = Kbx = X [bl + % (bJ-bl):]

Aj

area ratio _=

are

Where

bij =

dig =

3

J

alJ

aji
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(Eq.C2)

Again denoting the

by C, the expressions for the flexibility coefficients

]

|
s

&jj“-___

1
o
Q

I
(¢}
+

c3/

2

s 3
Ps3
933

(1- J&)3

-

¢ (Eqs.C3)

(Egs.ClL)

In Table Cl, values of the parameters ¢ii, $3j3 and ¢1j are tabu-

lated for 0.0l increments of ¢ from 0.10 to 0.90.

In figure C2, the

¢ parameters are plotted versus the area ratio c.
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Table Cl

Flexibility Coefficient Parameters for Linearly Varying Dimensions

c $is i Qi c $ii i3 Qi3
0.05 1} 0.L015 | 0.0898 | 0.1795 0.51 | 0.8379 | 0.5984 | 0.7061
0.10 | 0.5100 | 0.1613 | 0.277L 0.52 | 0.8L42L | 0.6075 | 0.7135
0.11 | 0.5264 | 0.1746 | 0.2940 0.53 | 0.8L68 | 0.6165 | 0.7207
0.12 | 0.8416 | 0.1876 | 0.3100 0.5 { 0.8512 | 0.6255 | 0.7279
0.13 | 0.550 | 0.2005 | 0.3252 0.55 | 0.8555 | 0.6345 | 0.73L9
0.1 | 0.5694 | 0.2131 | 0.3L400 0.56 | 0.8600 | 0.6436 | 0.74L1k
0.15 | 0.58822 | 0.2255 | 0.3542 0.57 | 0.8650 | 0.6531 | 0.7L68
0.16 | 0.5943 | 0.2377 | 0.3680 0.58 | 0.8678 | 0.6609 | 0.7560
0.17 | 0.6057 | 0.2498 | 0.381L 0.59 | 0.8719 | 0.6697 | 0.7628
0.18 | 0.6167 | 0.2617 | 0.394L 0.60 | 0.8758 | 0.678L | 0.7696
0.19 | 0.6272 | 0.273L | 0.4070 0.61 | 0.8797 | 0.6871 | 0.7763
0.20 | 0.6373 | 0.2850 | 0.4193 0.62 | 0.8836 | 0.6957 | 0.7829
0.21 | 0.6L469 | 0.2965 | 0.4313 0.63 | 0.887L | 0.70L3 | 0.7895
0.22 | 0.6%3 | 0.3078 | 0.L4h31 0.6l | 0.8911 | 0.7129 | 0.7960
0.23 | 0.6652 | 0.3190 | 0.4545 0.65 | 0.8948 | o0.7214 | 0.8025
0.2 § 0.6739 | 0.3301 | 0.L657 0.66 | 0.8985 | 0.7299 | 0.8088
0.25 | 0.6822 | 0.3411 | 0.4766 0.67 | 0.9023 | 0.7384 | 0.8151
0.26 | 0.6903 | 0.3520 | 0.L87L 0.68 | 0.9057 | 0.7L68 | 0.821L
0.27 | 0.6982 | 0.3628 | 0.4979 0.69 | 0.9091 | 0.7552 | 0.8277
0.28 | 0.7058 | 0.3735 | 0.5082 0.70 | 0.9125 | 0.7635 | 0.8339
0.29 | 0.7132 | 0.3840 | 0.5183 0.71 | 0.9159 | 0.7718 | 0.8401
0.30 | 0.7204 | 0.3946 | 0.5283 0.72 | 0.9193 | 0.7801 | 0.8L62
0.31 | 0.7274 | 0.4051 | 0.5378 0.73 | 0.9226 | 0.7993| 0.8523
0.32 | 0.7341 | 0.L4153 | 0.5477 0.74h | 0.9259 | 0.7965 | 0.8583
0.33 | 0.7407 | 0.Lk255 { 0.5571 0.75 | 0.9291 | 0.80L6 | 0.8643
0.34 | o0.7472 | 0.4357 | 0.566L 0.76 | 0.9324 | 0.8128 | 0.8701
0.35 | 0.7535 | 0.LL58 | 0.5756 0.77 | 0.9356 | 0.8210 | 0.8759
0.36 | 0.7596 | 0.4558 | 0.58L6 0.78 | 0.9386 | 0.8280 | 0.8819
0.37 | 0.7657 | 0.4657 | 0.593L 0.79 | 0.9418 | 0.8371| 0.8876
0.38 | 0.7717 | 0.4757 | 0.6019 0.80 { 0.94L49 | 0.8452 | 0.8932
0.39 { 0.7773 | 0.L85L | 0.6108 0.81 | 0.9479 | 0.8531 | 0.8989
0.40 | 0.7829 | 0.4951 | 0.6193 0.82 | 0.9509 | 0.8611 | 0.9045
0.41 | 0.788L | 0.50L8 | 0.6277 0.83 | 0.9539 | 0.8691 | 0.9100
0.h2 | 0.7938 | 0.51hl | 0.6360 0.8 | 0.9569 | 0.8771 | 0.9155
0.43 { 0.7991 | 0.52L0 | 0.6L42 0.85 | 0.9599 | 0.8850 | 0.9209
0.4l | 0.8042 | 0.5335 | 0.6523 0.86 | 0.9629 | 0.8929 | 0.9263
0.4L5 | 0.809L | 0.5L30 | 0.6601 0.87 | 0.9658 | 0.9008 | 0.9316
0.L6 | 0.81L6 | 0.5525 | 0.6676 0.88 | 0.9687 | 0.9087 | 0.9368
0.47 | 0.8192 | 0.5616 | 0.6759 0.89 | 0.9716 | 0.9166 | 0.9420
0.48 } 0.8240 | 0.5709 | 0.6836 0.90 | 0.97L45 | 0.92uL | 0.9472
0.49 | 0.8287 | 0.5801 | 0.6912 0.95 | 0.9880 | 0.9629 | 0.9750
0.50 | 0.833L | 0.5893 | 0.6987 1.00 | 1.0000 | 1.0000 | 1.0000
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Flexibility Coefficient Parameters for Linearly Varying Dimensions
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APPENDIX D

FLEXIBILITY COEFFICIENTS FOR A PANEL SUBJECTED TO A UNIFORMLY
VARYING SHEAR FLOW

In this appendix, algebraic expressions are derived for the flexi-
bility coefficients for a panel element simultaneously subjected to a
uniformly varying shear flow and a uniformly varying axial force as

shown in figure Dl.
Y Tz
) %‘3 %4- Panel thickness = t

T X
b

Figure D1

Bruhn and Schmitt in reference 61 give the flexibility coefficients for

the axial forces as

o =a =2 - B
11 %22  3AE  3DbtE
g ca =L ._h
12 21 BAE  6btE

Assuming a linear variation in the shear flow,

X
q, = 93 * glg, - a3)
where q, is the shear flow at station x. The strain energy of shear

may be expresses as

1 T2
d'Ushear " 20 dx dy

where T is the shearing stress.
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Since the shear flow is assumed constant in the y-direction, the strain

energy becomes

b
_ ht 2
Ushear - ZG-\ST dx
C

b ) b
2Gt 3 b b2 n b2 37 b b2
0
° (0

After integrating and substituting S = bh, the expressions for the

flexibility coefficients are
%33 7 %L T 36t

33, © %43 T &Gt
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APPENDIX E

NUMERICAL EXAMPLES

In this appendix, two numerical examples are presented in which
the Maxwell-Mohr Method employing matrix notation is used to determine
the stress distribution in the thrust structure of the C-5 launch ve-
hicle for the rebound loading condition. A typical section, represen-
ting the stiffened panel from one of the hold-down posts to an adja-
cent thrust post, is shown in figure El. The typical section is
assumed to be a flat panel having a width equal to the arc length of
the curved panel. The material for both the sheet and the stiffeners
is 7075-T6 aluminum alloy having a Modulus of Elasticity, E, of

10,500,000 psi and a Modulus of Rigidity, G, of 4,000,000 psi.

Method I

The analysis used in the first numerical example is referred to
as Method I. In this analysis, the idealized structure is assumed to
consist of a hold-down post to which the load is applied that trans-
mits only normal stresses, stiffeners that transmit only normal stres-
ses and sheet material that transmits only shearing stresses. The
generalized force system used in the Method I analysis is shown in
figure E2. In figure E2, Q through g represent the normal force in
the hold-down post at the indicated stations, 9 through Q14 TEPTE-
sent the normal force in the stiffeners at the indicated locations
and q107 through Yoy, represent the shear flow in the indicated web.

In figure E3, the generalized force system is shown in greater detail
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for the element in bay 3 between the fifth and sixth stiffeners.

The hold-down post is assumed to have a linearly varying area in
each bay. Within each bay, the shear flow in the sheet is assumed to
be constant between adjacent stiffeners. As a result of the latter
assumption, the normal forces in the hold-down post and in the stif-
feners vary linearly between stations.

The idealized structure assumes that the total strain energy con-
sists of the sum of the following: (1) the strain energy due to the
normal forces in the hold-down post, (2) the strain energy in the skin
due to the normal forces acting parallel to the stiffeners, (3) the
strain energy due to the shear flow in the skin, and, (L) the strain
energy due to the normal forces in the stiffeners. The strain energy
due to the normal forces in the skin is accounted for by assuming that
the stiffeners in the idealized panel have an area equal to the area
of the actual stiffeners plus the area of the equivalent width of sheet.
In this idealized panel, the strain energies due to the following forces
are neglected: (1) normal forces in the skin acting perpendicular to
the stiffeners, (2) forces in the thrust post, (3) shearing forces in
the posts and stiffeners, and, (4) forces in the intermediate rings.
This analysis also assumes that the upper ring assembly effectively

serves as a rigid support.
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Typical Section of Stiffened Panel

¢ Hold- down Post ¢ Thrust Post

Hat seclion stijfeners, A=116in?

185, b4 .

l a
L b 13 @10.46°%135.98" > J
e >

Sheel Thickness = 0.92]

e Hold- down st Rreas, (ivt) Upper Thrust Rim:s

{

STA. 280
104 ‘ a
EXR

23.6

344 v

344 N\
3b6.4 1

b |

34

531
\oa.t,-f}

m#.r'f
P=1.275 *\0 |bs,

] STA. \10

Figure E1
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Details of Generalized Force System for Method I
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L
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Figure E3
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Details of Hold-down Post
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Using the notation employed in reference 61, the matrix of flexi-
bility coefficients is a symmetrical matrix denoted by [éii] . For

the panel shown in figure E2,

— -
al,l a1,2 a1,3 e e e e 81,20b
32,1 a‘2’2 a2’3 e e e e a2,20h
E“ij] = . . (Eq.E1)

| %2041 “eon,2 %20L,3 * v %20h,204 |
As indicated, since the generalized force system contains 204 general-
ized forces, the [a'ij] matrix is a 204 x 204 matrix.

The elements in the matrix of flexibility coefficients that corre-
spond to the generalized forces 9 through g acting in the hold-down
post are computed using equations B6 and B7 derived in Appendix B. The
notation used in computing the flexibility coefficients for the hold-
down post is illustrated in figure ElL. Referring to figure E4 for the

necessary dimensions, these flexibility coefficients are:

_ 1
81" §KIE (Eq.E2)
Ll
al’2 = 32,1 = E_—A:LE (Eq.E3)
L L

a2,2 = 3A1E o+ 3A3E 022 ‘ (Eq.Eh)
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(Eq.E5)

(Eq.E6)

(Eq.E7)

2
3c 3c,,-be, 1
- 23 23 23
where ¢22 (10 )3 ( - = Cp3 1n c23>
23
A
3
and c = —=
23 1
A
2
o5y, e 0
2,3 3,2 A3E 23
6c23 023+1 c,
where ¢23 = 5 + 3 1ln ¢
(1-c,,) 2 1w,y 23
L L
Q. | = 2 9. + 3
3,3 3A3E 33 3A3E
-3c23 c§3-h2 +3
where ¢33 ( )2 3 + 1n g
1l-c 2
23
L
a =3 = 2
3, L,3 6A3E
' 5 0h
T 4, LT \Z%E ILE -
ha— 4
by
dhss ) aS,)J- ) EALLE
L L
_ L 5
%5,5 " WE T AS U5
3C 6 3026—hc 6+1
where ¢55 = ( 2 ) 5 2 - céé 1n 056
1l-c 2
56
A
. 6
and 056 E;
L
5,67 %,5 ~ @z bss
6056 056+1 056
where ¢56 > + Toe 1n 056
\ (l‘csé) 2 56

(Eq.E8)
(Eq.E9)

(Eq.ElO)

(Eq.11)
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- 5 _6_ ¢t
%6,6 = IE % " AT be
2
-3¢ ct, e, +3
where ®66 = 563 ( 56 "7%6 ~ ., 1n 056)
2
L e |Cerieer™t 2 L
66 " 1. )3 - 67 ™ %67
67
A
7
L¢
" 87,6 T BLE ber
bc c, +1 c
67 67 67
where ®67 e 2 ( — T in C6J
7
- L6 ¢) L? ¢l
1,7 3A7E 7 3A8E 77
2
-3c c;-he, +3
where (.., = 67 61 61 -, 1n ¢
77 (1_067)3 5 67
1 3¢.8 3°$8"L“’78+:L 2
¥ . 3 " g 1% Crg
(l—c78) 2
A
8
L7
- ég7 T EAGE b8
6c Co o+l c
where ¢78 = 18 5 ( 78 + 1_28 1n c7;)
(1-078) 2 78
L
) 3A7E bgg
8
2
-3c el -heo o*3
where (g = 78 8 "8, In ¢
7

(Eq.E12)

(Eq.E13)

(Eq.E1L)

(Eq.E15)

(Eq.E16)
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The flexibility coefficients corresponding to the axial loads in
the stiffeners are computed noting that in each bay there are fourteen
stiffener elements of the same length and cross-section area. For ex-
ample, in bay 2,

35,9 = 216,16 ~ #23,23 ~ 30,30 T 37,37 ~ 2ub,bh T %51,51 T %s58,38

35 65 = 72,72 ~ 279,79 © 286,86 793,93 - 100,100

Lyt L5

3AE 3(L4.5072)(10.5 x 10

9

z = 316.9523 x 10~
)

210,10 ~ *17,17 T %2l,2h T 31,31 T #38,38 © *u5,L5 T 52,52

= %o 59 T 266,66 - 373,73~ 280,80 ~ 287,87 T %9L,9L

L2 L} 70

9
a =
101,101 3AE 3(L4.5072)(10.5 x 166)

n

= ,93.0383 x 10~

#31, 30

9,10 - 210,9 ~ *16,17 - *17,16 ~ %23,2L ~ F2h,23 T #30,31

®37.38 038,37 ks T Zus,kh T %s1,52 T 52,51 T @585

T 859,58 ~ 25,66 ~ %66,65 ~ 272,73 - %73,72 ~ %79,80 ~ 280,79

286,87 - 287,86 ~ 293,94 ~ %9L,93 = %100,101 T 101,100

L, 35

) ) 9
6AE ~ 4().©072)(10.5 x 10°)

= 123.2596 x 10~

Similar relations exist for the stiffener flexibility coefficients in
the other bays. In order to utilize a digital computer to generate

these flexibility coefficients, they may be expressed as follows:

+L
: . _m m+l
314m+7n,1+m+7n 3AE (Eq.E17)
= 1,2,3,00unns ,7

where
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L
_ - _m+l
and %) it Tn, 24me T S4men, 14mHTn - GAE (Eq.E18)
_ m=1,2,3,..... ,6
where ¢y < 1,2,3,......1L

In a similar manner, the flexibility coefficients corresponding to

the shear flows may be .expressed as

9.82Lm
8106+m,106+m = ~ Gt (Eq.E19)
where m= 1,2,3,...... , 7
10.LéL
m

and (Eq.E20)

8106+m+7n,106+m+7n Gt

1,2,3,0000nn,?
1,2,3,0000ns ,13

0o

where

In equations E17, E18, E19 and E20, the constants have the follow-

ing values:

i}

Ly 10, L2 = L3 = 35, Lh = 19.5, L5 = 28.8, L = 29.6, L7 = 12.1,

6 6

L,=0 and A =L.5072, E = 10.5x 107, G =L x 10, t = 0.320.

8

Equations E2 through E20 define all the non-zero elements in the ay

J
matrix. There are 386 non-zero elements and 41,230 zero elements in

the aij matrix.

The generalized force system shown in figure E2 contains 98 re-
dundants. For this analysis, the normal forces in the stiffeners, q9
through Qg2 Were selected as the 98 redundants. The unit external
load matrix, denoted by [%ié], is formed by applying unit loads in
place of the external loads to the determinate structure obtained by
removing the redundants. The number of rows in the Eim matrix is e-
qual to the number of generalized forces. The number of columns in

the 8im matrix is equal to the number of external loads. For the gen-
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equal to the number of external loads.
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For the generalized force sys-

tem used in this analysis, the Bim matrix is the 204 x 1 matrix given

by equation E21.

where g

and gy =

e

8> © g3 g, T g5

0" &1 " - - ¢

1,1
€21
g3,1

SNERE

€203,1

€200,1

-

=8, ~8 “gg~*l

n-'-a=g20h=0

(Eq.E21)

The unit redundant force matrix, denoted by [éi;]’ is formed by

applying unit forces in place of the redundants to the determinate 4_ﬂ—,,f—*’/’

g

Structure.  The number ol rows in the g:r matrix is equal to the number

of generalized forces and the number of columns is equal to the number
g q

of redundants. In this analysis, the g,  matrix is the 20l x 98 ma-

trix given by equation E22.

£1,1

€204,1 E20L,2

ﬂ
g1,3 e o ¢ o o oo g1,98

g2,3 e e e e e . g2’98

S20u,3 © * * * * Ba0k,98

(Eq.E22)
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The values of the elements in the first column of the g p matrix are
the values of the generalized forces when the first redundant, dg> is
set equal to unity. The values of the elements in the second column
are obtained by setting the second redundant, 09 equal to unity, etc.

For example, when Ay = 1, the non-zero elements in the first column are:

g2,l = -1,000
= +1,000
89,1 0
A
Eo7,1 " ¥ i +0,1000
S
glOB,l = L2 0.028571

The remaining 200 elements in the first column are each equal to zero.
The sign convention was chosen so that a positive normal force in the
hold-down post or stiffeners represents a compressive force and a
positive shear flow corresponds to a shear flow acting up on the left-
hand edge of a panel element. As a further example, the elements in
the eighth column of the &ip matrix are obtained by setting the eighth

redundant, Q149 equal to unity. The non-zero elements in the eighth

column are:
g2,8 = -1.000

g16,8 = +1.000
8107,8 ~ 8114,8 = LLl = +0.1000
g108,8 = g115,8 = = f; = -0.028571
The remaining 198 elements in the eighth column are each equal to zero.

In order to utilize a digital computer to generate the elements in

the 8: matrix, the elements of the g: matrix may be expressed as

follows:
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g9+n’ Lan = +1.0000 (Eq.E23)
where n = 0,1,2,3,¢0000..
€o4n, L4n+tm -1.0000 (Eq.E2L)
where n = 0,1,2,....,6
and m=0,1,2,....,13
B107+7n, 147m = ﬁ = +0.1000 (Eq.E25)
8108+7n,147m = ~ I_le = -0.028571 (Eq.E26)
£108+7n,2+7m * f% = +0.028571 (Eq.E27)
8109+7n,2+7m = " LL3 = 0028571 (Eq.E28)
£109+7n,3+7m = * 5; = *+0.028571 (Eq.E29)
€110+7n,3+7m ~ ~ IT::' = -0.051282 (Eq.E30)
- + éﬂ = 10.051262 ~ —~(EEsT)
11 147m, b 7m = - fl; = -0.034722 (Eq.E32)
811147n, Ge7m = * Ll—g = +0.03L722 (Eq.E33)
€112+7n, 5+7m ~ ilz = -0.033783 (Eq.E3L)
E112+7n, 647m = * Lié = +0.033783 (Eq.E35)
113+7n,6+7m = ~ fé = -0.0826lk (Eq.E36)
8113+7n,7+7m = Ll—7 = +0.0826L) (EqQ.E37)

m

= 0,1,
n = 0,1,
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Equations E23 through E37 define the 1561 non-zero elements of the Eip
matrix. The remaining 18431 elements are each equal to zero.
After forming the aij’ gim and g 1 matrices, a computer program is
required to perform the following matrix operations:
(1) Evaluate EHJ = [grj] [aii [:ger (Eq.E38)
where g4 18 the transpose of g; | 8iven by
equation E22,
E’ia] is given by equation E1,
a,nd,l:gjn is given by equation E21,
The a . matrix is a 98 x 1 matrix.
(2) Evaluate E’rs:] = [:grl] I:ai;l [gj;] (Eq.E39)
The g matrix is a 98 x 98 symmetrical matrix.
(3) Evaluate the inverse of a. | denoted by Ers_]]‘
(4) Evaluate @”’L = - Er‘s a’rr;I (Eq.ELO)
The G matrix is a 98 x 1 matrix.

(5) Evaluate E}ln; = [ginJ + l:gi;J [Gm] (Eq.EL1)

The Gim matrix is a 204 x 1 matrix.

The elements of the Gim matrix represent the desired solution. The
204 elements of the Gim matrix are the values of the generalized forces
Qys Qoo 0 0 v v v o), due to the application of a unit external load

q = 1. The matrix operations may be checked by determining the matrix

) B L]

where IE}] = [G ] If the G, matrix is correct, each element of the
jn im im

product

A‘rn matrix given by equation EL2 will be equal to zero.

The computer programs required to generate the elements of the aij

and g matrices were written by Mr. V. N. Eubanks of the Computer
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Division of the GCMSFC. Mr. Eubanks also wrote the programs required
to perform the necessary matrix operations.

The stress distribution in the panel was obtained from the com-
puter solution for the Gim matrix. Since the Gim matrix gives the
values of the generalized forces due to a unit external load, these
values must be multiplied by the rebound load of 1.275 x lO6 pounds
to obtain the desired force distribution. From the computer results,
the compressive stresses in the hold-down post at the indicated sta-

tions are:

| fo = 12,189 psi
L f1o- = 11,187 psi
| flo+ = 22,037 psi
i :
| )5 = 24,925 psi

f80_ = 20,683 psi

f99.5 = 19,922 psi

£

f128.3 = 25,029 psi
f157.9 = 37,653 psi
flo0 ~ 18,061 psi

These stresses are compared with the hold-down'post stresses obtained
by Method ITI in figure E6.
The results for the compressive stresses in the stiffeners and the

shear flows in the skin are given in Tables E1 and E2 respectively.
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Method I1

The analysis used in the second numerical example is referred to as
Method II. The idealized structure used in this analysis consists of a
hold-down post to which the load is applied and an unstiffened equiva-
lent sheet. The analysis assumes that the hold-down post transmits
only normal stresses while the equivalent sheet transmits both normal
stresses and shearing stresses. The generalized force system used in
this analysis is shown in figure E5. In figure E5, a4y through ag
represent the normal force in the hold-down post at the indicated sta-
tions, q9 through q78 represent the normal force in the equivalent sheet
at the indicated stations and q?9 through q1h8 represent the shear flows
in the equivalent sheet.

Since the stiffeners are uniformly spaced, the equivalent unstif-
fened sheet was obtained by distributing the total stiffener area over
the width of the panel. In this mamner, the equivalent unstiffened
sheet was found to have a thickness of 0.42163 inch. This procedure
appears to be justified by the assumption that the stiffened sheet does
not buckle.

The normal force in the hold-down post was assumed to vary linear-
ly between stations. The stress distribution in the equivalent sheet
was assumed to vary in the manner discussed in Appendix D. For a given
panel element, such as shown in figure D1, the normal force was assumed
to vary linearly in the y-direction but remain constant in the x-
direction while the shear flow was assumed to be constant in the y-

direction but vary linearly in the x-direction.
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This analysis assumes that the total strain energy consists of the
sum of the following: (1) the strain energy due to the normal forces
in the hold-down post, (2) the strain energy due to the normal forces
in the equivalent sheet, (3) the strain energy due to the shear flow in
the equivalent sheet. In this analysis, the strain energies due to the
following forces are neglected: (1) normal forces in the skin that act
normal to the stiffeners, (2) forces in the thrust post, (3) shearing
forces in the posts, (L4) forces in the intermediate rings. This analy-
sis also assumes that the upper ring assembly serves as a rigid support.

For this analysis, the 3 matrix is the 148 x 148 symmetrical ma-

trix given by equation EL3.

al,l al,2 al,3 ......... al,lhB
a2,l a2’2 a2’3 ......... aZ,lhB
b-alLI.B,l am832 alh8,3 ........ a.lhB, 1)48

The elements of the aij matrix corresponding to the flexibility coef-
ficients for the hold-down post are the same as those for Method I as
given by equations E2 through E16. The flexibility coefficients cor-

responding to the normal forces in the equivalent sheet are:

I A

#2+7n,2+7n = 3b_tE

L +L

_ 23
#3+7n,3+7n = 3b_1E (Egs.ELL)

. _ 23
L+7n,L4+7n 3b tE
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—
. _ s
5+7n,5+7n  3b tE
L _+L
a = i——6
6+7n,6+7n 3bntE
R _ Lty
7+7n,7+7n ~ 3b_tE
L
a = _7-
8+7n,8+7n 3b tE
L
a = a = 2
2+7n, 3+7n 3+7n,2+7n gbntE
L3 > (Egs.ELL cont'd)
23+7n,b+7n ~ ZL+7n, 3+70 &b_1E
L
a ~ = a~ ~ P T eye—
L+7n,5+7n S+7n,L+7n 6b tE
L
- -
*5+7n,6+7n - %6+7n,5+7n ~ 8b_t8
!W/\ L6
aﬁijn,7+7n = 3747n,6+7n =ﬂ§gﬁr5.,
L
a = 3 = !
7+7n,8+7n 8+7n, 7+7n gbntE

In equations Ehl,

L, = 10, L, = L3 = 35, Lh = 19.5, L5 = 28.8, Ly = 29.6, L7 = 12.1

by = L1.6kL

E = 10.5 x 106 and t

0.42163.

The flexibility coefficients corresponding to the shear flows in the

equivalent sheet are:
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Lb
= __mn
30 47mHm, 78+7nm | 78+7n+m, 71+7n+m  6GY
2L
80 8am, 78+m ~ 30t (Eqs.ELS)
a _ Lm(bn+bn+l)
85+m+7(n-1), 85+m+7(n-1) 3Gt
In equations ELS,
m=1,2,3,000000,
n=1,2,3c000.. ,9
Ly =10, L, = Ly = 35, Iy, = 19.5, Lg 28.8, Ly = 29.6, L, = 12.1
by = by = 2, b3-bh—5, b5=b6=10, b, = bg = 20, b9=h0
b = L1.6L

G=Lx lO6 and t = 0.42163
Equations E2 through El6 along with equations E4)y and ELS deéfine the
LO8 non-zero elements of the aij matrix for Method II.

The generalized force system used in Method II contains 70
redundants.

The unit external load matrix, gy Was formed by considering the

normal forces in the sheet, &9 through g8 as the 70 redundants. In

this manner,

E E%Jn] -1 (Eq.EL6) .
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1.0000

where g1 = g2 = 83 = gh = 85 = g6 = g7 = 83
g9 = glO = gll F e s e e e e =’glh8 =0
The unit redundant force matrix, g WS formed by setting the
redundants q9 through q78 equal to unity. The values in column 1 of
the g;p matrix are the values of generalized forces when 9 is equal
to unity; the values in column 2 when A1 is equal to unity, etc.

Defining the g p matrix as

- _
1,1 €12 81,3 - 8 70

g2,1  B2,2 By 3

: [gir] ) [gis] 1. (Eq.ELT)

_glhB,l.......".,g].hB,?O
]

L_\\_____—_‘Eﬁfls;sments of the g; . matrix are given by:
L N i,

\ — W mm——
| & Gyt L 00 e ’ (Eq.ELS)
3
T where n = 1,2,3,...... ,70
|
81, neim -1.0000 (Eq.ELY)
where n = 1,2,3,...... 57
and m=0,1,2,..... 9
= + —]-—
€79+7n,1+7m iy
€80+7n,1+7m  881+7n,2+7m i L
(Egs.E50)
= = -]; = + —l—
€80+7n,2+7m  E81+7n,3+7m i, L

1
€82+7n,3+Tm L_Lt
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-+ =
€82+7n,L+Tm I,
= -— —]‘-
€83+7n, 41+7m ic
= <+ ;—
g83+7n,5+7m L5
- - L
8Qly+7n, 5+mm - " I, (Fqs.E50 cont'd)
-4
E8ly+7n, 6+7m Iy
- L
€85+7n, 6+7m i
= 4 L
885+7n, 7+7m = L,
In equations E50,
m=0,1,2,¢0000.n ,9
n=0,1,2,... By
L, =10, Ly =1, =35 L = 19.5, L = 28.8, Ly = 29.6, L, = 12.1

Equations EL8, EL9, and E50 define the 855 non-zero elements of the g,
matrix of equation EL7.

The required matrix operations are the same as those for Method I
given by equations E38, E39, ELO, and E41. Equation EL2 again serves
as a check equation.

From the computer solution, the compressive stress in the hold-

down post are:

£, = 12,189 psi
bl = 1 3

10 0,821 psi
£, 4+ = 21,317 psi

10
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fhs = 23,221 psi
fgo = 19,178 psi
f80+ = 20,292 psi
fo9.5 = 18,408 psi
f128.3 = 22,677 psi

f1g7.9 = 32,550 psi

fl?O = 40,551 psi

The compressive stresses in the hold-down post obtained by Method
II are compared with those obtained by Method I in figure E6. The
compressive stress distribution in the equivalent sheet and the shear
flow distribution in the equivalent sheet, as determined by Method 11,

are given in Tables E3 and EL respectively.
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